Graph with Negative Weight

1 The Shortcoming of Dijkstra

Dijkstra is a search algorithm, which means it starts from one vertex, and explores the graph by
walking along edges and marking vertices. The algorithm maintains the invariant that when we pro-
cess remove the vertex u from the set (or whatever structure you are using to keep track of the next
vertex to process) we have already found the shortest path from the source to u. Furthermore, we will
not find any path from the source to u with less cost in the future. In a graph with negative weight
edge, this invariant can no longer be maintained. This is because after processing vertex u, you might
discover a negative weight edge to u that might yield a path with less cost.

2 Bellman Ford Algorithm

Bellman Ford is an algorithm to solve the single source shortest path problem on graphs with negative
weight edge. The core of the algorithm is the following function:

void relax (int u, int v) {
if (dist[v] >= dist[u] + weight[u][Vv])
dist[v] = dist[u] + weight[u][V];

The main idea is that if the edge (u,v) is the last edge of the shortest path to v, the the cost
of the shortest path to v is the cost of the shortest path to u plus the weight of (u,v). Thus, if we
iterate through every edge (u,v) in the graph and call relax (u, v), then we would have found
the shortest path for every vertex whose shortest path consists of only one edge. If we build upon this
solution and call relax (u, v) again for every edge, then we would have found the shortest path
for every vertex whose shortest path consists of two edges or less. Continuing in this fashion, after
the k'" iteration, we would have found the shortest path for every vertex whose shortest path consist
of k edges or less. Since the shortest path in a graph with V' vertices and F edges has at most V' — 1
edges, we only need to repeat the process at most V' — 1 time.

int dist[128];
vector<int> graph[128]; // adjacency list
vector<int> cost[128]; // cost[i][j] = cost of edge from i to graph[i][]]

void bellman_ford (int s) {
memset(dist , 0x3f, sizeof(dist));
dist[s] = O0;

for (int i = 0; 1 <V — 1; ++1)
for (int j = 0; j < V; ++j)
for (int k = 0; k < graph[j].size (); ++k)
dist[graph[j1[k]] = min(dist[graph[j1[k]], dist[j] + cost[jI[k]):



The Bellman Ford algorithm iterate through each edge V' times, and its time complexity is O(V E).
Note that after the k" iteration in the algorithm, we may have found some shortest paths with more
than £ edges. However, we are only guaranteed to find shortest paths with less than or equal to &
edges.

3 Negative Weight Cycle

A subtlety of computing shortest path in a graph with negative weight is the existence of negative
weight cycle. In this case, we may get as little cost as possible by simply traversing the negative
weight cycle indefinitely. Thus, it’s a good idea to be able to detect negative weight cycles. The
Bellman Ford algorithm can be easily extended to do so. Note that if the graph does not contain
negative weight cycle, then after V' — 1 iteration, we would not be able to relax any edges any further.
Thus, if we iterate through every edge again and call relax (u, wv) and the shortest path to one of
the vertex decreases, then a negative weight cycle exists.

4 Floyd Warshall and Negative Edges

It is very fortunate that the Floyd Warshall algorithm actually handles the negative weight edges
correctly. Thus, we can still use this algorithm for all pair shortest path on negative weight graph. It
is also very easy to detect negative weight cycle with Floyd Warshall. Essentially, we iterate through
every vertex v and check whether dist [v] [v] < 0. If such a vertex exists, then a negative weight
cycle exists.



